Tuesday, December 24, 2019
Social Effects of Technology Essay - 6374 Words
Introduction The interaction of technology and society may be the one thing more than any other that gives society a meaning and defines us a human beings. In recent years it has become popular to point fingers of accusation at technology as if it were autonomous and driving us all to perdition. I take other view. No doubt the uses of technology and society interact strongly. I think it wrongheaded and very naive to think of aggressive technology affecting a passive society eroding away the things that give society value and leaving behind a rusted hulk. Admittedly there always the potential for abuse or misuse of a technology, but technology is not inherently destructive, I argue. In the following we will consider ten effectsâ⬠¦show more contentâ⬠¦An entirely new industry had been born in the form of the microprocessor, a stepchild of the larger computer industry available only to big businesses with big dollars to buy big computing power. New skills and new opportunities for employment have come about as a result. The expansion of the computer market and proliferation of microcomputers into the mainstream of American life have increased the ability of the homemaker to run a household effectively; to shop and cook more efficiently; to learn about the true nature of family finances; and to create part-time productive jobs, and for a host of other things. The nation has, in effect, stepped out of the industrial arena into the information arena. Here is a single technology that has so changed our ability to gather, store, manipulate, and disseminate information that the entire economic structure has been transformed, And all from a single technological change, albeit with a highly sophisticated and extensively proliferated collection of applications. The computer and its impact on the economic structure is no less startling and dramatic than that of the steam engine; electric power; or for that matter, fire and the wheel. Through the computer, the efficiency and expansion of the economy have been so greatly accelerated that we are hard pressed to keep up with the changes. It is indeed revolutionary in nature and explosive in the speed at whichShow MoreRelated Social Effects of Technology Essays6300 Words à |à 26 Pages Introduction The interaction of technology and society may be the one thing more than any other that gives society a meaning and defines us a human beings. In recent years it has become popular to point fingers of accusation at technology as if it were quot;autonomousquot; and driving us all to perdition. I take other view. No doubt the uses of technology and society interact strongly. I think it wrongheaded and very naive to think of aggressive technology affecting a passive society erodingRead MoreSocial Institutions and the Effects on Technology Essay862 Words à |à 4 PagesSocial Institutions Effect of Technology Effects of Technology on the Education System CS300 Technology in Global Society Park University October 28, 2010 Outline 1. Introduction 2. History 3. Applications a. Distance learning b. Tutorials c. Books and other Materials 4. Benefits a. Affordability b. Accessibility c. New skills learned 5. Setbacks a. Privacy Issues bRead MoreThe Effects Of Technology On Our Social Lives1166 Words à |à 5 PagesOur generation is one defined by technology. Every day advances in cellphones, computers, cameras, medical technology, and much more are being made. Because of technology, the way we live our lives, and the way the world functions is vastly different than it used to be. One might argue that all of this technology is making our lives easier, and therefore, better. However, people do not realize all that we are losing, as we gain technological knowledge. In the eighties having a cellphone was a luxuryRead MoreEffects of Technology on Social Relationships Essay1778 Words à |à 8 Pageswill only increase. With the creation of new technology portions of life have become easier. Technology has changed the way we go through life. Itââ¬â¢s made talking to people easier, as well as keeping up with the lives of others. However, the effects have affected the aspects of our lives that donââ¬â¢t include technology. There are some people that feel technology use has helped to improve our society, and in many ways it has. The improvement of the technology over the last few years is astonishing. ThereRead MoreNegative Effects Of Social Media On Technology719 Words à |à 3 PagesPer:2 Society has become too dependent with technology in their lives because theyre always on it, children are negatively affected, and it can become a hazardous obsession. First of all, everyone is always using social media and theyââ¬â¢re on their device most of their device device most of the time. Grantend, it is known that they are laws in california that drivers in California and have to be hands free . However I know that people still post on social media and text when driving. For exampleRead MoreTechnology And Social Medias Effect On The Peoples Privacy1286 Words à |à 6 Pagescommunicate with othersâ⬠(Hachman). Each day people live with a false security that they are protected and maintain a sense of privacy. Citizens misplace their trust in social media and technology, and divulge their personal information in ignorance of the repercussions that may arise. Users say the advances in technology and social media wonââ¬â¢t affect the peopleââ¬â¢s privacy; however, it is proven that these advances can be a harbinger of both danger and discontent. Our nation is built upon its foundationRead MoreTechnology And Its Effects On Health And Social Security System4104 Words à |à 17 Pagespopulation ages, and as the digital health field expands, technologies addressing the unique challenges of aging in place will become more of a reality. Great strides already have been made to improve aging. Seniors who want to age in place need to be as independent as possible. Technical innovations for successful aging offer opportunities both for older people and for societies with growing numbers of old and very old people. Technology applied in a flexible and supportive manner can improve theRead MoreThe Effects Of Social Media On The Development Of Mobile Technology1385 Words à |à 6 PagesSocial Media Media Broadcast Marketing The increase of social media and the development of mobile technology in the last decade has been significant, which has transformed the communication strategies and especially with sharing the experiences and how information should be marketed to the target audience. According to Hollensen (2014), the selection of newspapers, web sites, and TV to be used for advertising (series of actions to reach goals) needs to be done (at the same time) with the developmentRead MoreComputer Supported Communication Technologies : Adverse Social Effects933 Words à |à 4 PagesComputer-supported communication technologies: Adverse social effects. Is communication the only good contribution to this new era of technology? Thanks to new technologies people can stay more connected than ever using the endless capabilities of their smartphones and also making use of the different social networks available. However, it seems that in this new era, the more connected we are, the more disconnected we become. Nowadays people seem to be more reluctant from interpersonal interactionRead MoreThe Effects Of Social Media On The World Of Technology, News And Material Travel At A Supersonic Speed909 Words à |à 4 PagesNovember 2015 Desensitizing Society In todayââ¬â¢s fast paced world of technology, news and material travel at a supersonic speed. Subjects are then conversed, deliberated as well as disputed feverishly on the virtual landscape: giving way to argument and counter argument, thus leaving no stone unturned. Social media has undeniably played an operative role in sanctioning the common age. Unfortunately though, there is also a flip side. Social media has become a part of our everyday lives, and is a viable
Monday, December 16, 2019
Private Versus Public Indonesian Schools Health And Social Care Essay Free Essays
string(41) " of 1527 observations and 231 variables\." Besides [ 2 ] , there is another paper that investigated the effectivity of private and public junior secondary schools in the Indonesian context. [ 8 ] studied the relationship between school pick and academic public presentation alternatively of school pick and future net incomes. [ 8 ] found that the academic public presentation of public junior secondary schools pupils was higher than private school pupils as measured by national concluding trial test tonss ( UN[ 1 ]) upon completion of junior secondary school. We will write a custom essay sample on Private Versus Public Indonesian Schools Health And Social Care Essay or any similar topic only for you Order Now Therefore, contrary to Bedi and Garg, [ 8 ] believe that public junior secondary schools are more effectual than private junior secondary schools. [ 8 ] besides doubt that the positive consequence of private schools could outweigh the high quality of public schools ââ¬Ë input quality. This paper presents a re-examination of Bedi and Garg ââ¬Ës appraisal on differential net incomes of public and private junior secondary school pupils, which is the nucleus of their empirical analysis. Using Bedi and Garg ââ¬Ës sample informations set, I obtained contradictory consequences to them. I found that their decision is biased and misdirecting. I am besides concerned about the usage of some placeholders of school quality indexs in Bedi and Garg ââ¬Ës net incomes theoretical account. Bedi and Garg used three variables that do non specifically demo the quality of junior secondary schools. Alternatively, Bedi and Garg use variables that show the status of the last school attended. Hence, it may be either a junior or a senior secondary school. I believe the used of inappropriate placeholders of school quality may bias the cogency of Bedi and Garg ââ¬Ës net incomes derived function. Last but non least, Bedi and Garg used the individual imputation of average permutation to get the better of the losing information. I believe this attack may skew the findings. I used the up-to-date MICE ( multiple imputation by chained equations ) attack to handle the losing value job. Using MICE, I besides found contradictory consequences to Bedi and Garg ââ¬Ës as the public school alumnuss net incomes are higher than private non spiritual school alumnuss. 2 Sample Replication The first measure used to retroflex Bedi and Garg ( 2000 ) was to make an indistinguishable information set to Bedi and Garg ââ¬Ës. Bedi and Garg use the Indonesia Family Life Survey 1 ( IFLS1 ) 1993 to gauge the effectivity of private and public schools in Indonesia. The IFLS1 is a large-scale longitudinal observation of single and household degree on socioeconomic and wellness study. The IFLS1 trying strategy was based on states, so the samples were indiscriminately selected within states. Due to cost-effectiveness the study had took merely 13 out of 26 states on the Island of Java, Sumatra, Bali, West Nusa Tenggara, Kalimantan, and Sulawesi. They were selected to stand for about 83 per centum of the Indonesian population. In 2000, RAND as the major manufacturer of IFLS published the 3rd moving ridge of IFLS, so called IFLS3. Harmonizing to the RAND web site, the populace usage files and certification of IFLS4 should be ready by early 2009. Bedi and Garg do non explicate the gro und they merely use the first moving ridge. However, I assume that Bedi and Garg do non utilize IFLS2 and IFLS3 as the research was conducted before the IFLS3 was publically released. Despite Rand has printing IFLS2 in 1997, the moving ridge does non incorporate employment informations that consists of net incomes and the figure of hours worked informations[ 2 ] [ htbp ] Comparison of Exclusion Process Item Bedi and Garg ( 2000 ) Fahmi* Initial income information 4900 7220 Had non proceeded beyond primary instruction 3391 5448 Had more than 12 old ages of instruction 291 274 Lack of information on hours of work 33 37 Missing information on school type 10 13 Reported incomes seemed incredibly high 3 9 Missing information on category size ââ¬â 41 Attend ( erectile dysfunction ) school more than 12 month ( miscoded ) ââ¬â 45 Missing information on failed in primary school ââ¬â 1 Missing information on male parent ââ¬Ës instruction ââ¬â 214 Missing information on female parent ââ¬Ës instruction ââ¬â 80 Missing information on school location ââ¬â 6 Missing information on faith ââ¬â 2 Number of staying observation 1194 1050 * ) The Exclusion stairss follows Bedi and Grag ( 2000 ) and another exclusion procedure can alter the consequence. I created a sample informations based on Bedi and Garg ââ¬Ës counsel ( pages 467-468 ) . However, I failed to reproduce Bedi and Garg ââ¬Ës sample informations even though I merged all necessary files and cleaned the informations right. My initial sample informations set consisted of 7220 respondents who have net incomes and are no longer pupils. The size of the initial information was about twice Bedi and Garg ââ¬Ës initial sample informations with 4900 observations. Missing and miscoded informations and besides sample limitations reduced the information set by 6170 ( more than 85 per centum ) to 1050 observations. Most of the observations, 5448, were dropped as they had non proceeded beyond primary school, while 274 observations were dropped since they had more than 12 old ages instruction. Furthermore, I dropped 13 respondents due to losing information on the school type and 9 observations as they had either 99997 or 999997 on entire monthly net incomes. Finally, I exclud ed the staying 389 observations as they had either losing information, miscoded category size ( 41 observations ) , figure of months in school period per twelvemonth ( 45 ) , failed in primary school ( 1 ) , parents ââ¬Ë instruction ( 294 ) , state where school is located ( 6 ) , and faith ( 2 ) . Table 1 nowadayss the full comparing of the exclusion procedure. Bedi and Garg used the IFLS1 issued by RAND in 1996 ( DRU-1195-CD ) . On the other manus, I used the IFLS1 information set called IFLS1-RR ( re-release ) that updates the original IFLS1. [ 9 ] explains that IFLS1-RR revisions and restructures the original IFLS1 to attach to with IFLS2. The different construction of IFLS1 ââ¬Ës DRU-1195-CD and IFLS1-RR perchance causes the mismatch between my sample informations and Bedi and Garg ââ¬Ës. Bedi kindly sent the sample informations set, PUBPRIV.DTA[ 3 ]. Bedi and Garg create the file on 7 February 1998 which consists of 1527 observations and 231 variables. You read "Private Versus Public Indonesian Schools Health And Social Care Essay" in category "Essay examples" However, Bedi and Garg did non direct the do-file[ 4 ]. Therefore, I can non track the building of sample informations. I tracked the difference of the sample informations sets by comparing Bedi and Garg ââ¬Ës sample that consists of 1194 observations with my 1050 observations. I can fit Bedi and Garg ââ¬Ës sample by 745 observations. Of the staying 449 observations, 17 observations are unidentified and 305 are considered as losing information. On the other manus, Bedi and Garg ââ¬Ës sample does non incorporate 305 observations from my sample informations despite those observations do non hold losing informations. Of the 305 observations losing informations, 34 observations have no information on the figure of months in a twelvemonth go toing school and 32 observations have no information on category size. Bedi and Garg substitute the losing informations on those observations by utilizing a sample average alternatively of dropping the figure of observations. The staying 214 observations have no information on either male parent ââ¬Ës or female parent ââ¬Ës instruction. Bedi and Garg put ââ¬Å" 0 â⬠value on those observations alternatively of dropping them. Despite Bedi and Garg explicating the major exclusion procedure, they do non indicate out the permutation procedure on the 305 observations. On the other manus, I provide the sketch of the tracking procedure in Table 1. I present the complete comparing of drumhead statistics between Bedi and Garg ââ¬Ës sample informations and my sample informations from IFLS1-RR in Table 2. [ T ] Table 1: Tracking Process of Mismatch Sample Data No. Note Obs. 745 Identical 17 Unidentified 152 Had more than 12 old ages instruction 34 ââ¬â Missing information on period of school in months. ââ¬â Bedi and Garg substitute the losing informations by sample mean. 32 ââ¬â Missing information on category size. ââ¬â Bedi and Garg substitute the losing informations by sample mean. 154 ââ¬â Missing information on male parent instruction. ââ¬â Bedi and Garg put ââ¬Å" 0 â⬠, alternatively of losing value in three silent person variable male parent of instruction. ââ¬â Three variables of male parent instruction are FATH_PRI and FATH_JH and FATH_SH. 60 ââ¬â Missing information on female parent instruction. ââ¬â Bedi and Garg put ââ¬Å" 0 â⬠, alternatively of losing value in two dummy variables of female parent instruction. ââ¬â Two variables of female parent instruction are MOTH_PRI and MOTH_SEC. Since my sample informations does non fit with Bedi and Garg ââ¬Ës sample, I can non reproduce all Bedi and Garg ââ¬Ës appraisal consequences. However, I continued the remainder of the appraisals by utilizing Bedi and Garg ââ¬Ës sample. Using Bedi and Garg ââ¬Ës sample I can retroflex Table 1 and 2 in Bedi and Garg ââ¬Ës paper. Table 1 in Bedi and Garg ââ¬Ës paper presents the descriptive statistics of all variables whereas Table 2 presents the descriptive statistics by type of school. I could retroflex the consequence of the coefficients on polynomial logit appraisal in Table 3. However, I could non fit the consequence on fringy effects of explanatory variables. Technically, I generated the consequence utilizing mlogit and mfx2 faculty on stata. I present the consequence on polynomial logit appraisal in Table 8 in appendix. Variable Bedi and Garg ( 2000 ) Fahmi ( R ) 2-5 Mean Std. Dev Mean Std. Dev ââ¬â Continued Variable Bedi and Garg ( 2000 ) Fahmi ( R ) 2-5 Mean Std. Dev Mean Std. Dev Continued on Following Pageâ⬠¦ LOGEARN -0.202 1.079 -0.290 1.063 EARN 1.492 2.567 2.030 17.655 Age 34.66 7.502 34.264 7.321 Junior 0.307 0.462 0.415 0.493 Senior 0.521 0.499 0.527 0.500 Male 0.672 0.469 0.689 0.463 Indonesian 0.404 0.491 0.370 0.483 HIN_BUD 0.066 0.248 0.074 0.262 Jesus 0.091 0.289 0.092 0.290 PRI_FAIL 0.204 0.403 0.208 0.406 Scholar 0.048 0.215 0.040 0.196 FATH_PRI 0.422 0.494 0.521 0.500 FATH_JH 0.101 0.302 0.113 0.317 FATH_SH 0.085 0.279 0.084 0.277 MOTH_PRI 0.380 0.485 0.470 0.499 MOTH_SEC 0.109 0.312 0.094 0.292 DIRT FLOOR 0.067 0.251 0.044 0.205 Class Size 36.47 9.301 36.651 8.884 Calendar months 9.459 1.849 9.638 1.710 OTH_PR 0.023 0.148 0.031 0.175 SKALI_ED 0.043 0.204 0.036 0.187 NSUMA_ED 0.106 0.308 0.097 0.296 WSUMA_ED 0.068 0.253 0.049 0.215 SSUMA_ED 0.051 0.220 0.052 0.223 LAMP_ED 0.023 0.151 0.027 0.161 EJAVA_ED 0.120 0.325 0.135 0.342 WJAVA_ED 0.139 0.346 0.131 0.338 CJAVA_ED 0.141 0.348 0.155 0.362 BALI_ED 0.048 0.215 0.058 0.234 NTB_ED 0.042 0.200 0.056 0.230 YOGYA_ED 0.067 0.251 0.065 0.246 SSULA_ED 0.042 0.202 0.038 0.192 JAKAR_ED 0.079 0.270 0.069 0.253 URBAN 0.708 0.455 0.670 0.470 SKALMNT 0.043 0.204 0.050 0.219 NSUMATRA 0.098 0.297 0.084 0.277 WSUMATRA 0.066 0.250 0.045 0.207 SSUMATRA 0.053 0.225 0.057 0.232 EJAVA 0.103 0.304 0.117 0.322 WJAVA 0.131 0.338 0.125 0.331 CJAVA 0.088 0.284 0.098 0.298 Bali 0.054 0.226 0.068 0.251 NTB 0.042 0.202 0.057 0.232 LAMPUNG 0.029 0.168 0.034 0.182 YOGKARTA 0.067 0.251 0.065 0.246 SSULAWES 0.042 0.202 0.040 0.196 Jakarta 0.176 0.381 0.160 0.367 Number of Sample 1194 1050 Table 2: Comparison of Descriptive Statistics Table 3 nowadayss the consequences on fringy consequence after polynomial logit appraisal. All Bedi and Garg ââ¬Ës fringy effects are different to my consequences. The marks on the coefficient of fringy effects in my consequences contradict Bedi and Garg ââ¬Ës consequences. Those coefficients are MOTH_SEC in private non spiritual and public appraisals, HIN_BUD in private Islam school, FATH_JH in private Islam school, and FATH_PRI in private Christian school. The differences may bespeak that Bedi and Garg used different techniques or faculties in gauging fringy consequence after polynomial logit. I used the the stata ââ¬Ës faculty mfx2 that suggested by [ 13 ] . [ 13 ] argues that mfx2 likely the most utile after multiple-outcome appraisals such as mlogit. On the other manus, Bedi and Garg do non advert the faculty or stata bid in the fringy consequence appraisal. Table 3: Fringy Effectss Appraisals Variable Public Private NR Private Is Private Ch 2-9 Bedi Fahmi Bedi Fahmi Bedi Fahmi Bedi Fahmi and and and and Garg Garg Garg Garg Male -0.0154 -0.005 -0.0259 -0.002 -0.0253 -0.005 0.0667 0.012 Indonesian -0.0345 -0.006 -0.0244 -0.001 0.0441 0.006 0.0147 0.001 Hin_bud 0.1983 0.003 ââ¬â -0.005 0.2817 0.123 -0.4819 -0.121 Jesus 0.0318 0.062 -0.2304 -0.029 0.2371 0.291 -0.0385 -0.323 Pri_fail 0.0897 0.017 -0.0304 -0.001 -0.0196 -0.002 -0.0397 -0.014 Fath_pri 0.0348 0.007 0.0171 0.001 -0.0028 0.001 -0.0548 -0.010 Fath_jh -0.0183 -0.004 0.0022 -0.000 -0.0289 -0.004 0.0450 0.008 Fath_sh -0.0048 -0.006 -0.0680 -0.003 -0.0752 -0.008 0.1481 0.017 Moth_pri -0.0147 -0.006 -0.0413 -0.002 -0.0293 -0.005 0.0854 0.013 Moth_sec 0.0139 -0.001 -0.0387 -0.002 -0.0390 0.008 0.0638 -0.005 Nitrogen 221 133 73 767 [ parity ] Bedi and Garg= [ 2 ] . Fahmi=Fahmi ââ¬Ës appraisal utilizing Bedi and Garg ââ¬Ës sample. Public is public school. Private NR is private not spiritual. Private Is is private Islam. Private Ch is Private Christan and other. 3 Selectivity Variables Bedi and Garg include the selectivity variables in the net incomes appraisals and the net incomes decompositions. Bedi and Garg argue that in Indonesia, the junior secondary school sorting is a consequence of parental pick and choice standards that in some instance may implement by the school. In doing the determination, Bedi and Garg assume that parents evaluate the benefits of go toing each peculiar school and they face four available school types, public, private non-religious, private Islamic and private Christian schools. The school screening that is based on choice standards is most likely true for public secondary school as they require a certain degree of concluding trial tonss before accepting the pupils. Bedi and Garg besides suggest that school sorting may non be exogenic and the pupil who has higher ability may be more likely to come in public secondary schools. Bedi and Garg used two-stage appraisal suggested by [ 5 ] to get the better of the selectivity prejudice job. To gauge the net incomes appraisal, Bedi and Garg ab initio used a polynomial logit theoretical account to bring forth the selectivity rectification term. In the 2nd measure, Bedi and Garg estimated the net incomes equations and included the selectivity variables or the opposite of Mill ââ¬Ës ratio ( lambda ) to the equations. The coefficient on lambda measures the consequence of non-random screening single, while either the positive or negative mark indicates the nature of choice. The negative coefficient indicates that unseen variables that influence school pick are negatively correlated with unseen variables that determine net incomes. Bedi and Garg compared the consequences of OLS decompositions and two measure decompositions to demo the consequence of choice prejudice on the theoretical account. Despite Bedi and Garg utilizing the two measure method used in many surveies on school effectivity, I am concerned about the consequences of Bedi and Garg ââ¬Ës appraisals on selectivity variables and decompositions with selectivity prejudice. To verify the consequences, I re-estimated the polynomial logit equation utilizing Bedi and Garg ââ¬Ë sample informations set that derived from PUBPRIV.dta. I used the two-step technique proposed by [ 3 ] . [ 3 ] created selmlog as a faculty in STATA on choice prejudice rectification when choice is specified as a polynomial logit. I used Lee ââ¬Ës method in selmlog option, since Bedi and Garg used Lee ââ¬Ës two-step method to gauge the theoretical account. The Comparison of Selectivity Variable ( ) School Type Bedi and Garg ( 2000 ) Bedi and Garg ââ¬Ës sample and Fahmi computation 2-5 t-stat. t-stat. Public -0.089 ( -0.310 ) 0.104 ( 0.370 ) Private Non Religious -0.848** ( -2.384 ) 0.895** ( 1.990 ) Private Islam 0.073 ( 0.120 ) 0.259 ( 0.330 ) Private Christian 0.031 ( 0.272 ) -0.666* ( -1.75 ) [ parity ] [ 1 ] * = P lt ; 0.1, ** = P lt ; 0.05, *** = P lt ; 0.01 Table 3 presents the comparing of selectivity variables. Using Bedi and Garg sample informations, the consequences show positive selectivity for public schools, private non-religious schools, and private Islam schools and negative choice into private Christian schools. The coefficient in private non-religious school and private Christian school equation are statistically important. This consequences contradict Bedi and Garg ââ¬Ës consequences. In Bedi and Garg ââ¬Ës appraisals, negative selectivity exists in public and private non spiritual groups, whereas positive selectivity nowadayss in private Islam and private Christian schools. The coefficient lambda is important merely in private non-religious school appraisal. The coefficient on the selectivity variable of public schools in Bedi and Garg ââ¬Ës is -0.089, whereas in my consequence it is 0.104. In private non spiritual schools and private Christian schools, Bedi and Garg ââ¬Ës are -0.848 and 0.031, while in my conse quences are 0.895 and -0.666. In private Islam appraisal, Bedi and Garg ââ¬Ës is 0.073 while in my consequence is 0.259. I present the full comparing of the two measure appraisals in Tables 9, 10, 11, and 12. Bedi and Garg point out that the negative coefficient on lambda was statistically important in private non spiritual school appraisal. Bedi and Garg used this determination to back up their statement that the strong negative choice consequence in private non-religious school reversed the public and private non-religious school advantage. However, utilizing Bedi and Garg ââ¬Ës sample informations set, I found that the mark of in private non spiritual is positive. The positive and important coefficient on lambda implies that a non-participant type in private non spiritual group will be given to hold higher net incomes. Non participant-type in private non spiritual schools are pupils from high socio economic sciences background. From the consequence of school screening in Table 3, pupils whose parents do non hold secondary instruction most likely attend private not spiritual schools. Therefore, the non participant type or the sub-sample of private non spiritual school are pupils whos e parents have high instruction or have high socio economic background. The negative mark on the selectivity variable in private Christian school implies that pupils from non-participant types in these group will be given to hold lower net incomes. Intuitively, pupils from low socio economic sciences backgrounds who study in private Christian schools will be given to hold lower net incomes. 4 Net incomes Decomposition Bedi and Garg used the Blinder-Oaxaca decomposition to gauge net incomes differential between public school and private school alumnuss. Bedi and Garg used the double decomposition that included some non-discriminatory coefficient vectors to find the part of the spread in the forecasters. Harmonizing to [ 10 ] , the two fold decomposition can be written as ( 1 ) where the inferior refers to the public schools group and the inferior refers to private schools groups. is the the natural logarithm of single net incomes. is a vector of ascertained features and is a vector of coefficients on ascertained features. is the individuality matrix and is a diagonal matrix of weights. Now the double decomposition is ( 2 ) where is the net incomes difference. The first constituent, , is the net incomes derived function that is ââ¬Å" explained â⬠by group differences in the forecasters. The first difference is besides known as measure consequence. The 2nd portion, is the ââ¬Å" unexplained â⬠portion. is the differences caused by favoritism and unseen variables. Bedi and Garg follow [ 10 ] who used the average coefficients between the low and the high theoretical account or. Reimers believes that the favoritism in in labor market could impact the net incomes of either the bulk or minority group. Therefore, Reimers suggests that the diagonal of D ( matrix of weights ) should be 0.5 to avoid the incompatibility in decomposition consequence. I re-estimated the Blinder-Oaxaca decompositions on Bedi and Garg ââ¬Ës ascertained net incomes differential utilizing Oaxaca. Oaxaca[ 5 ]that created by [ 4 ] , is a STATA technique which allows gauging the Blinder-Oaxaca decomposition net incomes derived functions in one bid[ 6 ]. I present the comparing of the reproduction on the Blinder-Oaxaca decomposition in Tables 4 and 4. Table 6 presents the comparing of net incomes differential utilizing OLS appraisal as the appraisal does non include the selectivity variable. The consequences of Bedi and Garg and my appraisal utilizing Bedi and Garg sample informations are similar. Despite some differences in the 3rd denary values, the consequences could be considered as minimally different. The consequences suggest that Bedi and Garg ââ¬Ës computation and my technique, utilizing Jann ââ¬Ës Oaxaca, produced similar end products. However, Bedi and Garg do non supply the standard mistakes or statistical trials for the difference. Harmonizing to [ 4 ] , merely a few surveies on the Blinder-Oaxaca decomposition are concerned about the issue of statistical illation. Jann argues that statistical illation in the decomposition consequences is necessary to bring forth equal reading. In general, my computations on Blinder-Oaxaca decomposition are similar with Bedi and Garg ââ¬Ës. However, there are some differences in the 3rd figure in some denary Numberss. For case, Bedi and Garg ââ¬Ës entire log net incomes derived function between public and private non spiritual is 0.316 whereas in my consequence the spread is 0.318. The consequences of Bedi and Garg ââ¬Ës net incomes decompositions should be treated with cautiousness because of two factors. First, Bedi and Garg do non supply the t-statistics or the standard mistakes of the difference. Second, the choice prejudice could hold appeared in the net incomes appraisals. Table 3 shows that the choice prejudice occurs in private non spiritual school and private Christian school appraisals. Therefore, the net incomes derived function in Table 4 on those two groups are biased. The Comparison of Earnings Differentials Between Public and Private Schools ( OLS ) Type of Bedi and Garg ( 2000 ) a Fahmib 2-8 School Thymine Tocopherol Uracil Thymine Tocopherol Uracil Private Non Religious 0.316 0.162 0.154 0.318*** 0.163*** 0.155** ( 0.086 ) ( 0.054 ) ( 0.078 ) Private Islam 0.311 0.254 0.057 0.309*** 0.254*** 0.055 ( 0.117 ) ( 0.077 ) ( 0.113 ) Private Christian -0.140 -0.204 0.064 -0.142 -0.205* 0.064 ( 0.147 ) ( 0.116 ) ( 0.130 ) [ a ] Bedi and Garg do non supply standard mistakes or t-statistics [ B ] Standard mistakes are in parenthesis and heteroscedasticity consistent T = Observed net incomes derived function utilizing OLS E = Differentials due to differences in agencies utilizing OLS ( Explained ) U = Differentials due to differences in parametric quantities utilizing OLS ( Unexplained ) = P lt ; 0.01, ** = P lt ; 0.05, * = P lt ; 0.1 Table 4 shows that pupils who graduated from public schools earn 30.9 per centum more than their opposite number from private Islam schools. This grounds is strong as the net incomes derived function is statistically important at 1 percent degree of significance. The difference in the explained features contributes to about 82 per centum as the spread is 25.4 per centum. This spread is significance at 1 percent degree of significance. It means that the variables included in the theoretical account could explicate the 82 per centum of net incomes differential between public school and private Islam alumnuss. The difference in unexplained features are 5.5 per centum. However, this consequence is likely non true as the difference is non statistically important. [ ht ] Table 4: The Comparison of Earnings Differentials Between Public and Private Schools ( Two-Step ) Bedi and Garg ( 2000 ) a Fahmib 2-8 Thymine Tocopherol Uracil Thymine Tocopherol Uracil Private Non Religious -0.754 0.236 -0.990 0.243** 0.151*** 0.09 ( 0.111 ) ( 0.055 ) ( 0.098 ) Private Islam 0.468 0.241 0.057 Sodium Sodium Sodium ( NA ) ( NA ) ( NA ) Private Christian -0.046 -0.226 0.180 -0.104 -0.197 0.093 ( 0.233 ) ( 0.123 ) ( 0.190 ) [ a ] Bedi and Garg do non supply standard mistakes or t-statistics [ B ] Standard mistakes are in parenthesis and heteroscedasticity consistent T = Adjusted net incomes differential utilizing Two-step E = Differentials due to differences in agencies utilizing Two-step ( Explained ) U = Differentials due to differences in parametric quantities utilizing Two-step ( Unexplained ) = P lt ; 0.01, ** = P lt ; 0.05, * = P lt ; 0.1 NA = Not Applicable In Table 3 the selectivity variables in private non spiritual and private Christian schools are statistically important. This grounds suggests that ordinary least squares ( OLS ) appraisal every bit good as the net incomes differential decomposition in these two groups would be biased. Table 4 nowadayss the net incomes decomposition utilizing the two-step method. In this tabular array, I do non supply the spread between public and private Islam schools since the coefficients on selectivity variables of both the groups are non statistically important. The net incomes derived function between public school and private non spiritual school is 24.3 per centum and is important at 0.05 degree. The spread is lower than the net incomes difference calculated by OLS appraisal. The net incomes decomposition on OLS appraisal between two groups are 31.8 per centum. Therefore, the inclusion of the selectivity variable in the theoretical account corrects the net incomes spread of 7.5 per centum. Si milar with the net incomes spread between public and private Islam schools, the explained or observed features in the theoretical account contribute to most of the spread. The part of measure effects or ascertained variables to the spread is about 60 per centum and is important at 0.01 significance degree. This part is higher than the OLS appraisal that merely contributes 52 per centum to the spread. The spread on the unseen variable are little and non statistically important. This consequence contradicts Bedi and Garg ââ¬Ës decision that the strong selectivity consequence reverses the public and private non-religious net incomes decompositions. I agree that the selectivity consequence corrects the net incomes spread but it does non change by reversal the advantages of public schools over the private non spiritual schools. The net incomes derived function of two-step appraisal between public and private Christian schools corrects the spread estimated by OLS. However, all the differences are non statistically important. Therefore, I can non reason what is the net incomes differences between the two schools since the groundss are likely non true. This undistinguished consequence on net incomes spread may be caused by the little figure of observations in the private Christian school group. The figure of observation in this group is 73 whereas the figure of observations in public school group is 767. 5 School Quality Indexs Despite my findings beliing Bedi and Garg ââ¬Ës decisions, the placeholders of school quality indexs may bias the cogency of Bedi and Garg ââ¬Ës net incomes theoretical account[ 7 ]. Alternatively of utilizing standard variables for school quality indexs such as teacher-student ratio, outgo per student, and degree of instruction of instructors, Bedi and Garg used three proxy variables: a dummy variable of whether the school has a soil floor ( DIRT FLOOR ) , the length of the school term ( MONTHS ) , and the figure of pupils in the category ( CLASS SIZE ) . The figure of observations that linked to the information of these standard variables for school quality are non equal[ 8 ]. I believe BG ââ¬Ës placeholders for school features ââ¬Ë variables could hold biased the consequences. Harmonizing to the manual book of IFLS1, DIRT FLOOR, MONTHS, and CLASS SIZE[ 9 ]supply information about the school features last accompanied by respondents. Therefore, some of the informations o n these proxy variables will be biased for respondents who attend senior secondary schools. The 1,194 from informations observation set in Bedi and Garg ââ¬Ës survey, there are 519 observations that are non junior secondary school. In fact, Bedi and Garg merely focus on the quality of junior secondary schools. 6 Missing Data Treatment I am besides concerned about the losing informations intervention in Bedi and Garg ââ¬Ës paper. There are two variables in net incomes equations that have losing values: CLAS_SIZ and MONTH. CLAS_SIZ has 72 losing values whereas MONTH has 55. Bedi and Garg used a traditional attack, the average permutation, to get the better of losing informations on those two variables. Hence, Bedi and Garg replaced the 72 losing values in CLAS_SIZ and MONTH by 36.40461 and by 9.412534. Harmonizing to [ 6 ] average imputation is simple to implement, nevertheless, it has some serious disadvantages. First, average permutation will diminish the discrepancy of the sample as the decrease of the sample will under gauge the true discrepancy. Second, the appraisal of non additive variables can non be estimated systematically. Third, average imputation will falsify the distribution of and form of the imputed variables. [ 1 ] points out that average permutation would be the worst attack when there is big in equality in losing informations for different variables. Another traditional attack that is alleged the list-wise or instance omission may be applied in this theoretical account to get the better of losing informations job. However, This attack may give indifferent appraisal if the MCAR premises are met. MCAR or Missing Wholly At Random appears when the chances of losing informations do non depend on any other observed or unobservable variable. However, MCAR seldom happens in household or family study. In the survey about the impact of childbearing on wellbeing utilizing IFLS informations, [ 7 ] argues that the premise of MCAR is non sensible in the survey. Mattei believes that the premise of losing informations mechanism or MAR ( Missing At Random ) is more sensible. To avoid inconsistent prejudices or equivocal consequences, I re-estimated Bedi and Garg ââ¬Ës school pick and net incomes derived function utilizing the multiple imputation by chained equations ( MICE ) . Multiple Imputation was originally developed by Rubin ( Rubin1976, Rubin1977 ) and implemented as MICE for general used by [ 12 ] . In STATA, MICE is implemented utilizing mvis or ice[ 10 ]. These STATA ado-files bundle were developed by [ 11 ] . Selectivity Variable in Mean Substitution and Multiple Imputation attack School Type Bedi and Garg ( 2000 ) Bedi and Garg sample Average Substitution Mouses 2-5 t-stat. t-stat. Public -0.089 ( -0.310 ) -0.103 ( -0.360 ) Private Non Religious -0.848** ( -2.384 ) -0.896** ( -2.200 ) Private Islam 0.073 ( 0.120 ) -0.247 ( 0.320 ) Private Christian 0.031 ( 0.272 ) 0.650* ( -1.820 ) [ parity ] * = P lt ; 0.1, ** = P lt ; 0.05, *** = P lt ; 0.01 I created 5 transcripts of imputed sample informations utilizing ice bid. Then, I used mim bid to gauge the polynomial logit and two-step net incomes equation utilizing the five imputed information set. I compared the consequence of utilizing multiple imputation and Bedi and Garg ââ¬Ës average permutation in Tables 6, 5, and 6. Table 6 presents the comparing of the selectivity variable of Bedi and Garg ââ¬Ës and my appraisal. Then, Tables 5 and 6 compare the OLS and two-step net incomes derived function utilizing individual imputation ( average permutation ) and multiple imputation ( MICE ) . [ ht ] Table 5: The Comparison of Earnings Differentials Between Public and Private Schools ( OLS ) Type of Bedi and Garg ( 2000 ) a Fahmib School Average Substitution Multiple Imputation 2-8 Thymine Tocopherol Uracil Thymine Tocopherol Uracil Private Non Religious 0.316 0.162 0.154 0.315*** 0.168*** 0.148** ( 0.034 ) ( 0.021 ) ( 0.030 ) Private Islam 0.311 0.254 0.057 0.314*** 0.251*** 0.055 ( 0.045 ) ( 0.077 ) ( 0.030 ) Private Christian -0.140 -0.204 0.064 -0.119*** -0.191*** 0.072 ( 0.056 ) ( 0.044 ) ( 0.046 ) [ a ] Bedi and Garg do non supply standard mistakes or t-statistics [ B ] Standard mistakes are in parenthesis and heteroscedasticity consistent T = Observed net incomes derived function utilizing OLS E = Differentials due to differences in agencies utilizing OLS ( Explained ) U = Differentials due to differences in parametric quantities utilizing OLS ( Unexplained ) = P lt ; 0.01, ** = P lt ; 0.05, * = P lt ; 0.1 Table 6 shows that about all selectivity variables in MICE appraisal have the same mark with Bedi and Garg ââ¬Ës appraisal, with merely the private Islam school group beliing to Bedi and Garg ââ¬Ës. The coefficient on selectivity variable in private Islam school is -0.247, whereas Bedi and Garg ââ¬Ës lambda in the same group is 0.073. The coefficient on lambda in private non-religious and private Christian schools are statistically important. Bedi and Garg point out that the negative coefficient on the selectivity variable in the private non-religious school group reverses the high quality of the public school group to their opposite number from private non spiritual schools. Bedi and Garg province that the net incomes spread between public schools and private non spiritual schools are reversed from 31.6 per centum to -75.4 per centum. However, in MICE appraisal the important negative coefficient on selectivity variable merely reduces the spread from 31.5 per centum to 24.6 per centum as public schools are still superior than private non spiritual school. Furthermore, the spread that is caused by unexplained or unobservable variables alternatively adds a positive 8.8 per centum to the entire spread. Table 5 shows that there is a similarity in net incomes derived function of the private Islam group in Bedi and Garg ââ¬Ës and my appraisal. The entire spread in MICE appraisal is 31.4 per centum whereas the explained spread is 25.1 per centum. The discernible variable adds 5.5 per centum to the entire spread, however the coefficient is non important. [ ht ] Table 6: The Comparison of Earnings Differentials Between Public and Private Schools ( Two-Step ) Bedi and Garg ( 2000 ) a Fahmib 2-8 Thymine Tocopherol Uracil Thymine Tocopherol Uracil Private Non Religious -0.754 0.236 -0.990 0.246*** 0.158*** 0.088*** ( 0.045 ) ( 0.022 ) ( 0.039 ) Private Islam 0.468 0.241 0.057 Sodium Sodium Sodium ( NA ) ( NA ) ( NA ) Private Christian -0.046 -0.226 0.180 -0.071 -0.180*** 0.109 ( 0.092 ) ( 0.047 ) ( 0.073 ) [ a ] Bedi and Garg do non supply standard mistakes or t-statistics [ B ] Standard mistakes are in parenthesis and heteroscedasticity consistent T = Observed net incomes differential utilizing two-step E = Differentials due to differences in agencies utilizing two-step ( Explained ) U = Differentials due to differences in parametric quantities utilizing two-step ( Unexplained ) ` = P lt ; 0.01, ** = P lt ; 0.05, * = P lt ; 0.1 7 Decision Using Bedi and Garg ââ¬Ës sample informations, new sample informations, Jann ââ¬Ës selmlog and Oaxaca, and multiple imputation attack, I found the contradictory consequence to Bedi2000. I found that the important negative choice variable in private non spiritual schools does non change by reversal the high quality of public schools over private non spiritual schools. I found grounds that public school alumnuss earn more than private school alumnuss. Bedi and Garg used the traditional average permutation to get the better of the losing information. This individual imputation attack is non appropriate and may bias the consequences. Using the up-to-date MICE ( multiple imputation by chained equations ) to handle the losing value, I found the public school alumnuss have higher net incomes than private non spiritual alumnuss. The negative coefficient on the selectivity variable does non change by reversal the high quality of public schools. The usage of some placeholders as school quality indexs in Bedi and Garg ââ¬Ës gaining theoretical account may besides bias the consequences. Bedi and Garg used three proxy variables that explain the status of last school attended. Since some of the respondents attended senior or higher instruction, hence, it may bias the cogency of the theoretical account. Mentions [ 1 ] Acock, A.C. Working with losing values. Journal of Marriage and Family, 67 ( 4 ) :1012 ââ¬â 1028, 2005. [ 2 ] Bedi, Arjun S. and Garg, Ashish. The effectivity of private versus public schools: the instance of Indonesia. Journal of Development Economics, 61, issue 2:463-494, 2000. [ 3 ] Bourguignon, FranAAà §ois and Fournier, Martin and Gurgand, Marc. Selection Bias Corrections Based on The Multinomial Logit Model: Monte Carlo Comparisons. Journal of Economic Surveys, 21 ( 1 ) :174-205, 2007. [ 4 ] Ben Jann. A Stata execution of the Blinder-Oaxaca decomposition. ETH Zurich Sociology Working Papers, 5, ETH Zurich, Chair of Sociology, 2008. [ 5 ] Lee, L. F. Generalized econometric theoretical accounts with selectivity. Econometrica, 51:507, 1983. [ 6 ] Little, R.J.A. and Rubin, D.B. Statistical analysis with losing informations. Wiley New York, 1987. [ 7 ] Mattei, A. Estimating and utilizing leaning mark in presence of losing background informations: an application to measure the impact of childbearing on wellbeing. Statistical Methods and Applications, 18 ( 2 ) :257 ââ¬â 273, 2009. [ 8 ] Newhouse, David and Beegle, Kathleen. The consequence of school type on academic accomplishment ââ¬â Evidence from Indonesia. Journal of Human Resources, 41 ( 3 ) :529-557, 2006. [ 9 ] Peterson, Christine E. Documentation for IFLS1-RR: Revised and Restructured 1993 Indonesian Family Life Survey Data, Wave 1. Technical study, RAND, 2000. [ 10 ] Cordelia W. Reimers. Labor Market Discrimination Against Hispanic and Black Men. The Review of Economics and Statistics, Vol. 65 ( No. 4 ) : pp. 570-579, 1983. [ 11 ] Royston, P. Multiple imputation of losing values: update. Stata Journal, 5 ( 2 ) :188 ââ¬â 201, 2005. [ 12 ] Van Buuren, S. and Oudshoom, CGM. MICE: multivariate imputation by chained equations. web. inter. nl. net/users/S. new wave. Buuren/mi, 2000. [ 13 ] Williams, R. MFX2: Stata faculty to heighten mfx bid for obtaining fringy effects or snaps after appraisal. Statistical Software Components, 2006. Appendix How to cite Private Versus Public Indonesian Schools Health And Social Care Essay, Essay examples
Sunday, December 8, 2019
Culture and Britain free essay sample
National identities are only one among the many identities that people can holdâ⬠, (Clarke,2009, p212). The key question this statement is asking is how people perceive themselves and how others perceive them as British. This highlights the main area of this assignment, what is Britishness and who is perceived as British? And also to what extent does British culture have ââ¬Ëshared valuesââ¬â¢, ideas and ways of life in todayââ¬â¢s society and is it better to talk of many cultures when discussing British culture. To be British implies sharing a place of residence, a place to call your country; itââ¬â¢s not entirely about being born in Britain or even the British flag. Many people argue that being British has its own characteristics in comparison to being French or Italian etc. , and this is true. Although residents of Britain will all have different personalities and identities according to their background, their Britishness will distinguish that they are British people and this forms the basis of a national identity and explains British culture. If you were to ask residents of Britain to describe themselves, they will do so in many different ways, and will always reference back to family and friends, all of which play a part in defining a British identity. Identities are socially constructed throughout life and each individual will have their own unique identity so therefore not every person in Britain will have the same mundane identity. Therefore to identify an overall national identity, Britain over time has grew to become a very modern and diverse society and also the political desire to define what Britishness is today (Clarke, 2009, p209-214). In the United Kingdom, national identity and citizenship do not always mean the same thingâ⬠, this information is provided by the Home office, (Home office cited in Clarke, 2009, p210). This statement gives a contemporary view of the British identity and helps define what exactly Britishness is. This statement then goes on and talks about how people from different countries in Great Britain describe themselves in comparison to British people. An example of this is the Scottish and Welsh state they have a Scottish and Welsh nationality but a British citizenship. Whereas people from Northern Ireland tend to describe their identity depending on which political party they support and also their cultural allegiances, as they may choose to state they are Irish, British or even both. In comparison to British people will tend to state they have a British identity and citizenship, not half and half like people from other parts of Great Britain. Alternatively, the social scientist Vron Ware stated that ââ¬Å"Britain is a composite nation, a patchwork of anomalies, mistakes and inconsistencies. It has a standing army but not a football team. â⬠(Vron Ware cited in Clarke, 2009 p210). It then goes on to saying how Britain has an unequal global order and copies off other countries such as Europe and United States by history and geography. This statement is very different from the above statement from the Home Office. This statement works off the idea that to be British you have to support a certain football team and have a certain language, but this isnââ¬â¢t always correct, people who live in Britain are British. Many people in Britain will have different cultures which include different rituals etc, to other individuals also being British. Both statements have common issues running through them, but both are very different also. The Home Office document mainly talks about how a British citizenship can be separate from a national identity, meaning that a person can live in Britain but have an African citizenship as that is their place of birth etc. Having a national identity is only one identity in which a person may hold, for instance a person may be very religious and hold a strong catholic identity. As stated above, to be British and have a British identity means you live in Britain, but as an individual you can also have many identities and many people in Britain will have, as society nowadays is very diverse. Moving on from the above, Britishness as stated is a place of residency, but along with that an individualââ¬â¢s identity in that residence will be hugely diverse. For instance, if you were a resident in Ireland, they tend to all have in common the same artistic or aesthetic cultural products such as Irish music and art and so on. Whereas in Britain, they isnââ¬â¢t a common cultural product, as each individual has a different identity whether this be down to religion or characteristics, and because of this, this is why many people state that when talking about Britishness, you should talk of cultures, not a culture of its own, this is what social scientists call ââ¬Ëhigh cultureââ¬â¢ (Clarke, 2009 p219). The other meaning of culture is treating culture as part of everyday life which includes the habits, practices and values of the life we live in Britain. Many cultural theorists and the historian Raymond Williams (1958) described being ââ¬Ëselective traditionââ¬â¢ as celebrating works and traditions set by your citizenship such as in Britain, residents should celebrate works done by Shakespeare and so on. Both meanings of culture as seen above are very different, some residents can be either, it is their choice and in this diverse society will choose to do so. Britishness is defined not on ethnic or exclusive groundsâ⬠¦Ã¢â¬ (Blunkett, 2004 p4, cited in Clarke, 2009 p221). Blunkett explains how Britishness is shared through values and diversity. Another statement which also explains Britishness in terms of shared values is explained by Phillips (2007) for example ââ¬Å"â⬠¦Britishness, lies in a way of living together characterised by tolerance, egalitarianism, respec t for dignity of the individual and a powerful tradition of dissentâ⬠(Phillips, 2007, p42 cited in Clarke 2009, p222-223). Both of these statements explain how everyday life in Britain as a resident is diverse in terms of living and also that residents respect the law and also each otherââ¬â¢s personal identity. Obviously both statements can be argued against such as crime rates etc and how migration of new residents have a main cause of British culture not being British culture no more as stated by Seimon Glynn, Chairman of Gwynedd County councilââ¬â¢s housing committee in an interview he revealed that with new migrants entering Britain is ââ¬ËIt makes us even poorer and it is absolutely no use to the communityââ¬â¢ (cited in Clarke, 2009 p167). But in unison this is how Britishness is perceived to others. Both Plunkett and Phillips main argument is that Britishness is open to people of all backgrounds and not being constructed against by their ethnicity or exclusive grounds. In Britain residents live in an imagined community as Benedict Anderson (1983) stated, he believes that nations have to be constructed with a set of connections or affinities between the members of the nation and the invention of a shared history that links them. Anderson (1983) uses the word ââ¬Ëweââ¬â¢ to describe Britishness and how ââ¬Ëweââ¬â¢ interact with each other in society, as speaking of Britain as a whole, gives an imagined view that Britishness is shared and that ââ¬Ëweââ¬â¢ share the same identity and culture. But in reality, to be British you do not have to have the same identity or cultural views to have the same citizenship. To summarise the above points, it is obvious that Britishness has changed from Shakespeare times to now massively. Britishness is now very diverse in terms of culture and views in many areas such as political and ethnicity. To describe British culture, you can selectively use certain topics such as arts and literature but it isnââ¬â¢t a way of life so not every resident will have the same values but residents of Britain will all share the same behaviour traits and follow the same laws and so on. Also, residents in Britain will have a British identity and also underlying identities in regards to their practices, religion and so on. Along with a personââ¬â¢s identity, you also have citizenship. To be British doesnââ¬â¢t mean you have to share the same taste in music and enjoy the same activities, to be British is a place of residency and to follow the same rules set by the country to be a part of it. Therefore, when talking of the British culture, is it better to talk of cultures? This is will be debated for a very long time, as every resident living in Britain has shared values and residency.
Subscribe to:
Posts (Atom)